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In  problems involving the interpretation of crystal structures of metals and intermetallic com. 
pounds, the volumes of 'polyhedra (in wave-number space) corresponding to Brillouin zones, defined 
by crystallographic forms or groups of forms with large X-ray structure factors, are frequently 
calculated in order to ascertain how well the polyhedra accommodate the quantum states of as- 
sumed numbers of valence electrons per unit  cell. This procedure depends upon a long-established 
apparent analogy between Brillouin zone stabilization and diffraction of the slow-moving valence 
electrons by  the crystallographic planes corresponding to these forms, and upon the reasonable 
assumption that  the structure factors for the diffraction of these slow electrons bear essentially the 
same qualitative relationships to one another as the structure factors for fast electrons or X-rays do. 
While the geometrical problems involved in calculating the volume of and number of quantum states 
contained in such a polyhedron are relatively simple when but one form is involved, the polyhedra 
corresponding to more than one form frequently truncate one another and the computation of the 
volume of the minimum truncated polyhedron for several forms is rather complicated. Methods for 
systematizing and simplifying these geometrical problems have been worked out, and are described 
here for the convenience of workers faced with the determination of the shapes and volumes of 
such polyhedra. 

Introduction 

In  the s tudy  of the  valences of meta l  atoms in crystals 
of certain metals  and intermetalHc compounds in this  
Laboratory,  the  necessi ty arose for calculat ing the  
volumes enclosed in wave-number  space b y  polyhedra,  
s imple and  t runca ted  (Pauling & Ewing, 1948). In  this  
par t icular  appl icat ion the  polyhedra  are specified by  
the Miller indices of the forms which define them. 
Sometimes an  effective polyhedron is bounded by  
planes corresponding to only one crystal lographic 
form, bu t  more often the  polyhedron is the  result  of 
mu tua l  t runca t ion  of polyhedra  generated by  two or 
more effective forms. Given the Miller indices of a 
n u m b e r  of forms wi th  large structure factors, the  
geometric problem arises of determining among which 
forms, if any,  t runca t ion  takes place;  of determining 
the shapes of the result ing t runca ted  or non- t runca ted  
polyhedra ;  and  of comput ing the volumes of the 
polyhedra.  A considerable saving in computa t ional  
t ime over methods  heretofore used has  been obtained 
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in the  present  work b y  the appl icat ion of analytica~ 
geometry and  by  the  sys temat iza t ion  of the  computa-  
tions. Criteria have  been formulated  for classifying 
t runca ted  polyhedra,  and formulae have  been derived 
for the calculat ion of the  volumes of polyhedra  of 
several types. The results of this  approach to the  
problem are summar ized  here in the  belief tha t  fu r ther  
opportunit ies  are l ikely to arise for their  use in the  
theoret ical  t r ea tmen t  of meta ls  and intermetal l ic  
compounds,  and  perhaps  also in problems of other  
kinds. 

The discussion here will be restr icted to po lyhedra  
tha t  are everywhere convex (i.e. have  no re -en t ran t  
angles); the  smallest  polyhedron tha t  is bounded by  
the forms under  consideration will be the  only one 
treated.  Moreover, since Friedel 's  law m a y  be expected 
to hold in at least a reasonable approximat ion  for slow 
electrons, only centrosymmetr ic  polyhedra  will be  
treated.  

T h e o r y  

The reciprocal-latt ice point  in wave-number  space 
corresponding to a set of crystal lographic planes with 
Miller indices (hkl) is at  the te rminus  of the  vector 

hhk 1 = ha* + k b * + l c * ,  (1~ 

where a*, b*, and c* are the  reciprocal-latt ice vectors 

b × c  
a* , etc. 

a x b  . c  

I t  is well known from the  work of Brfllouin (1930 
a, b, c, 1931, 1932, 1933a, b, 1936, 1946) and others  
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(Seitz, 1940) that  the energy eigenvalue ek, correspond- 
ing to a one-electron eigenfunction y~(r) representing 
a plane wave of wave number k travelling in a lattice- 
periodic potential function, deviates in general more 
and more from the  'flee-electron' eigenvalue e~ 
(corresponding to a constant potential) the closer the 
terminus of the vector k comes to a plane defined by 
the equation 

(k-½hhkz)" hhkl = O, (2) 

and that  when the terminus of k lies on such a plane 
ek is in general double valued, so that  ek is a discon- 
tinuous function of k along any path that  crosses such 
a plane• 

The plane in wave-number space that  corresponds 
to equation (2) is the one that  perpendicularly bisects 
the reciprocal-lattice vector hhkz. I t  will be seen that  
this plane is also the locus of the centers of all l~ossible 
Ewald spheres of reflection which correspond to 
crystallographic reflection from the (hkl) planes in the 
crystal (of the order implied by_the given hkl). The 
physical situation may therefore be described approxi- 
mately as diffraction of the travelling electron wave 
by the crystal lattice. 

The plane described by equation (2) in wave-number 
space is parallel to the plane (hkl) in real space. I t  
therefore appears convenient to describe it in terms 
of axes that  are parallel to the real crystallographic 
axes and proportional to them in length, with a factor 
of proportionality: that  takes into account the different 
dimensionality. The planes in wave-number (recipro- 
cal) space that  correspond to the form {hkl} describe 
a polyhedron which, aside from dimensionality 
factors, is geometrically similar to the polyhedron 
described in real space by all the planes in the form. 

The apparent analogy with X-ray diffraction has 
led to the prediction (Jones, 1934a, b) that  in gener- 
al the energy discontinuity at the plane described by 
equation (2) will be large when the X-ray structure 
~actor [Fhkz[ is large, and small when [Fhkz[ is small. 
In other words, the assumption is made that  the 
energy discontinuity for a given plane is a function of 
the structure factor for the slow-moving electrons in 
the metal, and that  the structure factors for slow 
electrons bear essentially the same qualitative rela- 
tionships to each other as the structure factors for fast 
electrons or X-rays do. Hence the Brillouin polyhedra 
in which we are interested are those that  correspond 
to forms with large X.ray structure factors. 

If we take the Born-v.K£rm£n periodic boundary 
conditions, it is seen that  (aside from spin) the density 
of quantum states in wave-number space (k-space) 
is one per volume 1/V c, where Vc is the volume, in 
real space, of the super-unit-cell defined by these 
boundary conditions. (For practical purposes, Vc can 
be taken as the volume of the crystal.) One reciprocal 
cell (reciprocal, that  is, with respect to the crystallo- 
graphic unit cell) in k-space therefore has a capacity 
of one quantum state per crystallographic unit cell, 

or, if we include spin, two states per unit cell. Hence 
we shall find it convenient to take the reciprocal cell 
as the unit of volume in k-space for all of our work. In 
terms of this unit, the number N of quantum states 
per crystallographic unit cell, including, spin, that  are 
contained inside a polyhedron is numerically equal to 
twice the volume V of that  polyhedron, and the 
number of states in the entire crystal that  are contained 
in the polyhedron is equal to N multiplied by the 
number of crystallographic unit cells in the crystal. 

The geometrical method of calculating volumes to 
be here described consists in dividing the surface of 
the polyhedron into plane triangles, evaluating the 
coordinates xi, Yi, and zi of the vertices i of the 
triangles with respect to a convenient coordinate 
system, and then calculating the volume of each tetra- 
hedron defined by the origin of coordinates (which is 
taken at the center of the polyhedron and hence at 
the origin of k-space) and the corresponding ith plane 
triangle. The volume of the polyhedron is the sum of 
the volumes of the several tetrahedra. 

Let us take a right-handed (not necessarily ortho- 
gonal) system of axes x, y, z in k-space with basic 
vectors ~, 1], ~. We shall find it convenient to define 
these vectors in such a way that  they are parallel 
respectively to the crystallographic axes a, b, and c, 
and proportional to them in length. Hence 

and 

where 

k = x ~ + y ~ + z ~  

k .  hj,~. z = K(hx+Icy+lz )  , 

(3) 

(4) 

(5) K = ~/a = ~?/b = ~/c .  

Equation (2) now becomes 

h x + k y + l z  = qhkz, (6) 

where ql, kZ is defined as 

1 1 
qhkz -- ,~K Ihhkzl~ = Kd~kz (7) 

The quantity dhkz is the Bragg spacing between planes 
(hkl) in the crystal. Equat ion (6) is the equation far  a 
plane that forms  one of  the faces of  the polyhedron. 

Consider a given plane triangle on this face,--the 
vertices of which are the termini of vectors kl, kg, and 
k a which are numbered in such-a way as to form a 
right-handed set. The volume of the tetrahedron 
corresponding to this face is one sixth of the volume 
of the parallelepiped defined by the three vectors, 
and hence is 

Xl Yl zl 

k l × k s ' k a - - ~  x2y~z~ . (~×1]-~).  

x3 Ya z3 

Because of symmetry it will in general be necessary 
only to consider one nth of the polyhedron in computing 
the volume, where n is the multiplicity of the point 
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group of the crystal. Hence we may  write for the 
volume of the polyhedron 

where 

V N n K 3 0 ~ A i  (8) 
2 6 j 

xlj ylj z~j ] 

A~_=_A(lj, 2j, 3j) - x~j y~j z~j ]. (9) 

x~i Y3i z3i 

Here V is expressed in terms of the volume of the 
reciprocal cell as a unit, and is a pure number equal 
to one half the number N of quantum states (including 
spin) contained, per unit  cell, in the polyhedron. 
V 0 is the volume of the crystallographic unit  cell 
(a × b • c). The sum in equation (8) is taken over all 
triangles (j) into which the n th  part  of the poly- 
hedron is decomposed. The vertices of each triangle 
are taken in such order as to form a right-handed set, 
so tha t  all terms in the sum will be positive. 

The coordinates of each vertex of the polyhedron 
can be obtained by  solving simultaneously the three 
equations (6) corresponding to the three planes inter- 
secting at  tha t  vertex. 

In  each of the point groups Oh, D4h, Deh, and D2h 
the sector of interest, comprising one nth of the 
polyhedron, is bounded by three mirror planes and 
can be defined by  three axes x, u, and v formed by the 
intersection of these planes two at  a time. The x axis 
is identical to the x axis of the polyhedron; the u axis 
is identical with the y axis in D~h, the line x = 2y 
(z = 0) in Deh, and the line x = y (z = 0) in Oh and 
D4h; and the v axis is identical with the line x = y = z 
in Oh, and in the other point groups is the z axis. We 
take the sector belonging in the positive octant. In  a 
polyhedron bounded by  one holohedral form only, 
the  sector of interest contains a single triangular face 
(hkl) which does not extencl beyond this sector except 
in special cases where it  may  be coplanar with faces 
belonging to one or more adjacent sectors. This face 
cuts the x axis at  a point which we shall refer to by 
the number 1, the u axis at  2, and the v axis at  3. If 
there are m mutual ly  truncating forms bounding a 
t runcated polyhedron, the sector will contain m faces, 
not  necessarily triangular. We shall here present 
criteria for the determination of the ways in which as 
many  as three forms can intersect within this sector. 

Where more than  one form must be considered, they 
will be distinguished from one another by the use of 
primes. Here we shall consider the forms {hkl}, 
{h'kT}, {h"k'T'}. The primes will be so assigned tha t  

r xl < xl -< x[ , (10) 

where x 1 is the x coordinate of point 1, x~ tha t  of 
point 1', and x~ tha t  of point 1". Where an equality 
exists, e.g. x 1 = x~, the primes should be assigned on 
the basis of a corresponding inequality in the y2's; in 

t 

the case given we require y~ _< yg, and so on. The 

coordinates of the points 1, 1', 1", 2, .. .  may  be found 
by apphcation of formulae which will be given in the 
sections dealing with particular point groups. 

An intersection of an unprimed plane with a primed 
one and with one of the planes which bounds the sector 
of interest gives a point which will be denoted 4, 5, or 6 
depending on whether the point lies on the x u plane, 
the x v plane, or the u v plane. Where the intersec- 
tion involves a primed and a doubly primed plane, it 
will be denoted 4', 5', or 6', and if it  involves an 
unprimed and a doubly primed plane it  will be denoted 
by 4", 5*, or 6*. A mutual  intersection of an unprimed, 
a singly primed, and a doubly primed plane will be 
denoted 7. Coordinates of these points may  be deter- 
mined simply by the solution of the corresponding set 
of simultaneous linear equations (one equation for 
each plane, of the form given by equation (6)). 

With three forms there are altogether seventeen 
general shapes possible (in a given one of the four 
point groups under discussion) for the smallest 
polyhedron, of which one (No. 1) is bounded by one 
non-truncated form, three (Nos. 2, 3, and 4) by two 
mutual ly truncating forms, and thirteen (Nos. 5-17 
inclusive) by  three forms each of which truncates 
at least one of the other two. ~'or facility in identifica- 
tion and calculation a further breakdown into thir ty-  
six cases has been made on the basis of the thirty-six 
possible combinations of inequalities among the 
coordinates of the points 2, 2', 2", 3, 3', and 3". These 
cases are presented schematically in Fig. 1. In  a few 
cases it is convenient to make a further breakdown 
on the basis of the coordinates of points 5, 5', 5", 
6, 6', and 6". Special cases (arising from equalities 
rather than  inequalities in the selective criteria) are 
not given separately in Fig. 1, as they preserit no 
problems not covered by  the general cases. Dashed 
lines denote intersection lines lying or extending out- 
side the polyhedron. The particular case in Fig. 1 
tha t  corresponds to a given selection of three planes 
may  be found by reference to Table 1. 

Cases involving more than  three mutual ly  truncating 
forms are too complicated to be treated here. When and 
if problems arise which require the consideration of 
such cases, it should be possible to solve these problems 
by taking the forms in various combinations, two or 
three at  a time, and applying the methods described 
here. I t  may  be helpful to point out tha t  whether a 
point x', y', z' lies inside, on, or outside a plane (hkl) 
depends on whether hx'+ ky'+lz' is less than, equal to, 
or greater than  qhkz. A simple means exists for insuring 
tha t  a form {h'"k"T"} does not t runcate  a given 
polyhedron; this consists in ascertaining tha t  

h'"xi+k'"yi+l'"zi <_ q'" (11) 

for every vertex i in the sector of interest. 
For the hemihedral point groups Th, C4h, and C6h 

the sector of interest, when defined conveniently with 
respect to the crystal axes, is not completely bounded 
by mirror planes and consequently contains in general 



252 A S Y S T E M A T I C  M E T H O D  F O R  C A L C U L A T I N G  V O L U M E S  O F  P O L Y H E D R A  

3 3'  3" 3 '  3 "  3 

5 5: 5" 
6" 

I 2 I 2 '  I 2" I I 2 I 2' 
4 4* 4 

I 2 0  2b 3 o  3b 4 0  

3 3 3" 3 "  3' 

4 4" 4 '  ,, • I I 2" 4 4 " 4 '  
4b 5 6 7 ea 

3'  5"  3 '  3 "  3"  3 

I" 2' ' ° I " IL  ~" ~ ' ; ' "  I 2~'  I 
44*4 '  - 4 4 '  4" I 4 4" 4 

sb 90 9b  lOG ~ob ~= a 

3 ° 3" 3' 3" 

' 4  , - 4 , - "  ' , , 4 4" 4' 4 4" 4' 4' I 

r i b  12a 12b 13o t 3 b  

3 

1" 4 "  4" ' 2 '  

140 

3 3 "  3 "  3" 

I 2 "  6 ,, I 2 "  I 
4' 4" 4 I 4 '  4" " 4 '  4" 4 4 '  

i4b 15 a 15 b 16 a 

3 a' 

16b 

3" 3"  3' 3"  3' 

I 2 "  I 4 4 "  " I I "  ' ~ 2 '  I "  " r ' "  : - " 1 2 "  
4" 4 "  4 4 '  4" 4 

1 7 a  17b 1 7 c  17d 17e  

3" 3' 3" 

5' 6' 5 6 O" 6" 

l Y ~  2' 4' 4 2" ~ 6 '  , I 4"  I 4 2 '  

n,f ITg 17h 

! I 
hkl h ' k , l  t h"k"l" 

Fig. 1. Schematic pr6sentation of thirty-six cases involving as many as three holohedral forms (see Table 1). 
(Note added in proof.--In 12 a and 12 b, 2* and 3* should read 2" and 3" respectively.) 

two planes of each form, both  of which extend outside 
the  sector of interest .  This fact  complicates the  problem 
of determining and  classKying the  types  of t runca ted  
polyhedra  and it will be worthwhile to consider here 
only cases involving one or two forms. 

Le t  the  sector of interest  be defined by  three  axes  
x, x*, and v. I n  T h and  C4h, the  x* axis is identical  
to the  y axis;  in C6h it  is identical  to the  line x = y, 
z -- 0. I n  T h the  v axis is identical  to the  line x = y = z; 
in C4h and  C6h it is the  z axis. Let  the  two planes to be 
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I 

I I  

I I I  

IV  

V 

VI  

Table 1. Selection criteria for truncated holohedral polyhedra obtainable with three forms 

v 
~_ z s 

Z 6 

z* 

< z* 

~ zs 
< z* 

<_ z* 

! 
~-- Y4 
~-~ Y4  

z c ,  
t 

z 6 

z 6 

z 6 
z~ 

Z6 

Y4 
Y4 

r 

} 
} 
} 
} 
} 

l l b  

4b 

t 
2:5 ~ 2:5 

(point groups Oh, D4h, D¢h, D2h) 

A B C D .g 
^ 

t t • t 
z6 < zo zo < ze za < z5 

/ {, 
1 1 3 a  3b  3 a  1 6 b  

, { 1 3 a }  1 6 a  1 1 3 a  . 3b 3 a  

13b 
3b 

3b 

9 a }  2a 10b 4a 4a 2a 17h 

4b 4b 17c 2b 17a 15a 2b 

~ 1 4 a }  2a 17b 2a 10a 1 ~  4a 4a 

5 l l a  8b 12a 8a 6 12b 
14b 4b 17g 2b 17e 15b 2b 

17d 

I 
I I  
I I I  
IV 
V 
VI  

! v !  v f f  

Y9 _ < Y 9  _ < Y 9  A z a _ < z  a _ < z  3 
y9 <_y'~" <_Y~ B z a <_z~" < z ~  

' __ _ ' < z  3 ~ " Y2 < Y~ < Y~' C z a _ z a 
, " < z  3 < ' Y~ _~Yg. ~ Y ~  D z a _ z a 

_ _ ' _ ~  " < z  a y~ < Y ~ '  < Y g .  E z 3 z 3 _ 
_ ' __ "_~< , < z  3 Y~' < Y ~  < Y 2  .F z 3 z a _ 

! ff Allcases :  x l _ < x  l _ < x  1. 

considered for a given form {hkl} be denoted (hkl) 
and (h*k*l*); the relations among these indices will 
be given in the later sections dealing with individual 
point groups. The (hkl) face of the polyhedron is tha t  
which cuts the x axis, while the (h*k*l*) face cuts 
the x* axis with an equal intercept. If two forms are 
to be considered, let the unprimed one be the one tha t  
cuts the v axis with the smaller intercept; i.e. we 
require tha t  

z 3 < z~. (12) 

The points of intersection of fhe various planes with 
each other and with the planes bounding the sector 
of interest are 

1 : (hkl), x axis 
1": (h*k*I*), x* axis 
1' : (h'kT), x axis 
1 " :  (h*'k*'l*'), x* axis 
2 : 

2'  : 

3 : 
4 :  
4 " :  
5 : 
5 " :  
7 : 
7 " :  
8 :  
8 " :  
9 :  
9 " :  

(hkl), (h*k*l*), xx* plane 
(h'kT), (h*'k*'l*'), xx* plane 
(hkl), (h*k*l*), v axis 
(hkl), (h'kT), xx* plane 
(h*k*l*), (h*'k*'l*'), xx* plane 
(hkl), (h'kT), xv plane 
(h'k*/*), (h*'k*'l*'), x*v plane 
(hkl), (h*k*l*), (h'kT) 
(hkl), (h*k*l*), (h*'k*'l*') 
(hkl), (h'kT), (h*'k*'l*') 
(h*k*l*), (h'kT), (h*'k*'l*') 
(hkl), (h*'k*'l*'), xx* plane 
(h*k*l*), (h'kT), xx* plane 

The coordinates of these points can be easily found by  
solving the corresponding sets of simultaneous linear 
equations (6) defining the intersecting planes. 

With two forms there are six general cases, of which 
one (No. 1) involves one form only, and five (Nos. 
2-6 inclusive) involve the mutual  truncation of the 
two forms. Two of the latter, No. 5 and No. 6, apply 
only to the point group Th. A further breakdown of 

Table 2. Selection criteria for'truncated hemihedral 
polyhedra obtainable with two, forms (point groups 

Th, C4h, C6h) 
C a s e  

y~lx 2 <_ y~lx~: 
t .  

X l  <--- ggl" 

Y$ g Y4 1 
Y4 < Y* : 

y~ < y~ 2a 
y;~ < y* 5a 

t 
~1 ~ X l  : 

x* ~ x* 4a 
x~ <_ x*: 

x~ <__ x9 3a 
x 2 <_ x* 6 

t ,  
X 1 ~ X 1 • 

X 9 

! 

x 1 _~ x 1 : 

Y9 --< 
Y4 --< 

All cases: 

X9 :  
• 9 < ~ 

, < X9 X 2 __ 

Y4 
Y9 : 
Y9 --< Y2 
y9 _< Y9 

z3 _< z.; 

1 

2b 
5b 

4b 

3b 
6 
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3 3 3 

t 2 0  2 b  

3 3 

5 5" 

I ' l l ' '  I' I "  
9* ~." 4 9 

30 3b 

3 3 

? _ _  
2 '  2' 

40 4 b  

3 3 3 

I 4 $,, 4~ I" I , o I 'l I" 4 2  4 ~°* 

5~ 5 b 6 

F ig .  2. S c h e m a t i c  p r e s e n t a t i o n  of  t e n  cases  i n v o l v i n g  as  m a n y  as  t w o  h e m i h e d r a l  f o r m s  (see T a b l e  2). 

the six cases into a total  of ten has been found con- 
venient. These are shown schematically in Fig. 2, and 
criteria for their selection are given in Table 2. 

There is some ground for supposing tha t  cases will 
rarely be encountered in which the consideration of 
the hemihedral cases is necessary; first, because most 
metallic structures are holohedral, and second, because, 
if one form in a hemihedral structure constitutes an 
effective barrier to the existence of electrons in states 
outside it, it is unlikely tha t  the Fermi surface will 
deviate so far from spherical shape as to extend 
beyond the planes defined by the other form which 
with holohedry would be equivalent to the first. When- 
ever in a hemihedral structure two forms truncate 
which in the corresponding holohedry would be 
equivalent to one another and together constitute 
a single holohedral form, the corresponding holohedral 
case 1 can be used so far as these two forms are 
concerned. 

Inscri-bed sphere.--In the event tha t  the Fermi 
surface is suspected to be capable of approximate 
representation by a sphere inscribed in and tangent  
to a polyhedron, the volume of the sphere, in terms 
of the unit  we have chosen (the volume of the 
reciprocal cell), may  be calculated by use of the 
equation 

V = N  1 
2 = a* × b------¥~- c * 6 ]hh~z]3 

(2Kq) 3/2 (13) = a × b - c ~  

since the radius of such a sphere, tangent  to the planes 
in the form {hkl}, is ½]hhkzJ. When a sphere is inscribed 
in a polyhedron defined by more than one form, the  
form with the smallest value of q is the one which is 
tangent  to the sphere, and tha t  value of q is the one 
tha t  should be used in equation (13). 

Cubic  s y s t e m  

A convenient choice of axes is 

K = 1/2a ~, ~ = ~ = ~ = 1/2a. (14) 

We obtain from equation (7): 

q = h2+k2+12. (15) 

Symmetry Oh (multiplicity n = 48; for crystals of 
point group symmetry  Td, O, Oh).--The sector of 
interest is tha t  subtended by  the shaded triangle 
in Fig. 3. The volume ,of a polyhedron in this point, 
group is 
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Fig. 3. 

Z 

Plane 

xj'3(.,.o,o) ~ 2(x~,x,,o) 
"Plane z----O 

Principal octant of general polyhedron of one form, 
symmetry Oh. 

N 
V = -- = ~ A ~ ,  (16) 

2 i 

where the sum is taken over all triangular faces in the 
sector of interest. Since the polyhedron is assumed to 
be  convex, the particular plane of the form { h k l }  which 
receives the indices (hk l )  and occupies the shaded 
position in Fig. 3 must  be so designated t M t  

h > k > 1 > 0 .  (17) 

The coordinates of the points shown in Fig. 3 are 

x 1 = q /h ,  Y l  = Zl = O ,  

x~ = y~ = q / ( h + k ) ,  z~ = 0 ,  / (18) 

xa = Ya = z3 = q / ( h + k + l ) .  

The volume of a polyhedron bounded by one form 

V = ½ N  = x ~ x , x  a = q a / { h ( h + k ) ( h + k + l ) } .  (19) 

Cases involving two or three forms may  be dealt 
with by reference to Fig. 1 and Table 1. In  Table 1, 

t ¢? t tt t tt 
Y~, Y~, Yz may  be replaced by x2, x~, x2, and za, zz, za 

t tt by x z, x 8, x3 by virtue of equations (18). Inequalities 
i 

containing zn, zs, and Ya may  be replaced by ones i n  
x 6, x n, and x a writ ten the other way around; e.g. for 

t t 
zn < z~ we may  take x6 _ x6. 

As an example, let us consider the polyhedron 
corresponding to the" strong powder line for which 
q = 36 in the 7 alloys (e.g. CunZn8). Here we have two 
forms,  {600} and {442}, both of which have large 
"s~ructure factors and are therefore assumed to give 
rise to strong perturbation discontinuities in the 
energy. These are already written in conformity with 
equation (17), and since 36/6 < 36/4 we take (600) as 
the unprimed plane (q=36, x 1=x 2=x 3= 6) and 
(442) as the primed one (q'=36, x~ =9, x~ =9/2, 
x~ = 18/5). Reference to Table 1 leads us immediately 
to case 2a, and the diagram in Fig. 1 reveals that we 
require the coordinates of points 4 and 5. The coordi- 
nates of points 4 and 5 are easily found to be (6, 3, 0) 
and (6, 2, 2) by solution of the corresponding sets of 
simultaneous linear equations, and we have 

V = N[2 = A(1, 4, 5)+A(2' ,  5, 4)+A(2' ,  3", 5) 

6 0 0  9/2 9 /20  9[2 9/2 0 

= 6 3 0  + 6 2 2 + 18/5 18/5 18/5 

6 2 2  6 3 0 6 2 2 

= 36+27+324/5  = 127-8 reciprocal cells. 

N = 255.6 electrons per cubic unit  cell 
(cf. Pauling & Ewing, 1948). 

S y m m e t r y  T h  (multiphcity n = 24; for crystals of 
point group symmetry  T and Th).--The sector of 
interest is tha t  subtended by the shaded area ir~ 
Fig. 4. 

Z 

( x 3 . x 3 , x 3 )  

~ Z  

l*(O,x~,O) 
y z 

. ~  2(,x~,~vo), 
/ 1 (x~.O,O) 

X 

Fig. 4. Principal oetant of genertd poryhed'ron of orr~ form, 
,symmetry Th. 

The general expression for the volume of a poly- 
hedron of this symmetry  is 

V N 1 2;  & .  (,20)~ 
2 2~  

For the particular plane of the form which is designated 
(hk l ) ,  we require tha t  

h > _ k > _ 0 ,  h > _ l _ > 0 , .  (21)~ 

We also find tha t  

h* = l, k* = h, / * =  k .  (22), 

The coordinates of the pgints sho, w~ in Fig. 4 are :: 

x l = q / h ,  Y z = z l = O ,  

h - k  h - 1  
X2 ---- q h 2 - k l  ' yg. --  q h2 - k l "  z~ -= 0 ,. (23)~ 

q 
x3 = Y3 = z~ - h + k + l "  

The volume of the polyhedron bounded by one form ia 
then 

q a ( 2 h - k - 1 )  (24) 
V = ½ z ~  --- ½ ( x l Y 2 X  3 + X l X 3 X 2 }  ~- 2h (h + ~ + l ) (h2-k l )"  

For the special case k = 1 this result reduces to the- 
result obtained for the volume enclosed by a single 
form in symmetry  0a (equation (19),), and equation~ 
(23) reduce to equations (18). 
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Polyhedra bounded by two forms may  be treated as 
described previously with the use of Fig. 2 and Table 2. 

Inscr ibed  sphere . - - - In  the cubic system the expres- 
sion for the volume of an inscribed sphere becomes 
part icularly simple: 

V N = ~ = ~ ~ .  (25) 

Tetragonal  s y s t e m  

We find it  convenient here to take 

K = 1]2a 9, ~ = ~ = 1/2a, ~ = c/2a ~ . (26) 
~-[eI1Ce 

q = h ~ + F + (ag /c~) l  ~ . (27) 

S y m m e t r y  D4h (multiplicity n = 16; for crystals of 
point  group symmetry  C4~, D~d, D4, and D4h). The 
~ector of interest is tha t  subtended by the shaded 
~riangle in Fig. 5. 

x~(X,,O,O) 

3(0,0.z3) 

2(x2,x,,o) 

Fig. 5. Principal octant of general polyhedron of one form, 
symmetry D4h. 

The general expression for the volume of a poly- 
hedron of this symmetry  is 

1 c ~ 
V = _N2 = -3 ~ ~.  A~. (28) 

For the partic,ular plane of the form which is desig- 
nated (hkl) we require tha t  

h _ > k > 0 ,  l > 0 .  (29) 

The coordinates of the points 1, 2, and 3 shown in 
Fig. 5 are 

x 1 = g/h, Yl = Zl = 0 ,  I 

xz = Yz = q / ( h + k ) ,  z z = 0 ,  / (30) 

xa = ya = O, z a = q / l .  

For a single form the volume of the polyhedron is 

N c ~ qa 
V = ,~ = 3a~ h ( h + k ) l "  (31) 

The t rea tment  of polyhedra bounded by two or 
Chree forms can b e  carried out with the aid of Fig. 1 
and  Table 1. 

S y m m e t r y  C4h (multiplicity n = 8; for crystals of 
point group symmetry  C,, $4, and G4h).--The sector 
of interest here is the positive octant  shown in 
Fig. 6. 

,3(0.0,Z3) 

/ ,  \ 

x..'~(x, .0.0) 2(xa.y=.O) 
Fig. 6. Principal oetant of general polyhedron of one form, 

symmetry C4h. 

The general expression for the volume of a polyhedron 
of this symmetry  is 

V N 1 02 
= y = ~ . Y / I ~ .  (32) 

For the particular plane in the form to be designated 
(hkl) we require tha t  

h_>0,  h>_[k], l ~ 0 .  (33) 

We also find tha t  

h* = - k ,  k* = h, l* = 1. (34) 

The coordinates of the points shown in Fig. 6 are 

x 1 = q / h ,  Y l = z l = O ,  

x~ q ( h - k )  q ( h + k )  
= h ~ + F  , y~ h ~ + F  ,z  2 = 0 ,  (35) 

xa = ya = O, z a = q/1.  

The volume of a polyhedron bounded by  one form is 

N 1 c 2 
V 2 6 a 2 (xzY~Za+Xzzax2) 

c ~ qa 
-- 3a 2 l (h2+k2) .  (36) 

For cases involving two forms Fig. 2 and Table 2 may  
be used. 

Inscr ibed  s p h e r e . - - I n  the tetragonal system the 
volume of the inscribed sphere tangent  to the planes 
of a form {hkl} is 

V N ~ c~/~ .  (37) 
2 6 a  

Hexagona l  s y s t e m  

In  this system we find it  convenient to take hexa- 
gonal axes throughout,  with 
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K =  2/3a  2, ~ = ~ = 2 / 3 a ,  ~ = 2 c / 3 a  9.  (38) 
Hence 

q = h 9 + hk  + k 9 + (3a2/4c ~) 12 . (39) 

For  the most  par t ,  the  designation (hkil) ,  where 
i = - h - k ,  will be abbrevia ted  to (hkl).  

S y m m e t r y  Dsh (mult ipl ici ty n = 24; for crystals  of 
point  group s y m m e t r y  D3h, De, Cs, and Deh).--The 
sector of interest  is t ha t  subtended by  the shaded area 
in Fig. 7. 

),' 

z Y 

x ~ ,  (x~ ,u,~/~(xv Y2.0) 

/ x f 2y  

Fig.  7. P a r t  of general  p o l y h e d r o n  of one form, s y m m e t r y  D6h.  

The general expression for the volume of a poly- 
hedron of this s y m m e t r y  is 

N 8 c 2 
V /1i.  (40) 

2 9 a 2 ~- 

For  the par t icular  plane in the  form which is designated 
(hkl) we require t h a t  

½ h > _ - k > _ 0 ,  / > _ 0 .  (41) 

The coordinates of the points shown in Fig. 7 are 

x l = q / h ,  Y l = z l = O ,  ] 

i 
2q q 

x9 = 2 h + k '  y9 = 2 h + k '  z9 = 0 ,  (42) 

xa = Y3 = O, z a = q/1.  

The volume of a polyhedron bounded by  one form is 

N 8C 2 8C 2 q3 

V 2 9 a  2 x l Y 2 Z 3  9 a  9 h ( 2 h + k ) l "  (43) 

For  cases of t runca t ion  involving two or three forms 
Fig. 1 and Table 1 can be used. 

As an example of the  applicat ion of these methods  
to a hexagonal  crystal,  let  us consider hexagonal  
closest packing. The first  zqne for a hexagonal  crystal  
is ordinari ly t h a t  bounded by  {100} and {001}, bu t  in 
h.c.p, the  la t ter  form is extinguished, and the  forms 
{101} and {002} m a y  have to be considered. 

A C 7  
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{100}: q = x  l = x ~ = 2 y ~ = l ,  z 3 = c ¢ .  
t t t t 

{101}: q' = xz = x2 = 2y~ = z a = 1+3a2/4c ~ . 

{002}: q" = 2z 3 = 3a2/c 2, x ;  = x 2 = 2y  2 = oo .  

The axial rat io for an ideal h.c.p, crystal  is c/a 
= 21/2/V3 = 1.633,  so  t h a t  z3 = 41/32 and z 3 = 9/16. 
H.c.p. s t ructures  found in na ture  do not  deviate from 
this axial rat io by  more t han  about  157/o at  the  most, 
and as long as c/a > ]/3/2 = 0.866 we see t ha t  

/ t 

Y2 < Y2 < Y2, z3 < z3 < Z 3 • 

Reference to Table 1 shows tha t  the  possible cases 
are 3b, 7, 13b, and 16b, and application of the given 
criteria to the calculated intersect ion-point  coordinates 
leads uniquely  to case 7: 

P o i n t  x y z 

1 1 0 0 
2 l i 0 
3"  0 0 Z 
5 1 0 ½Z 
5' 1 -- ½Z 0 Z 
6 1 ½ ½Z 
6' l - -  ½Z ½(l--  ½Z) Z 

We have  

' t, = 3a2/2c2 .  where  Z = z a 

~: A i = A(5, 1, 2)+/1(2,  6, 5)+/1(5' ,  5, 6) 
i 

-[-/1(6, 6', 5 ' )÷/1(3" ,  5', 6') 

= Z / 4 + Z / 4 + ( Z / 4 ) ( l + Z / 2 ) + ( Z / 4 ) ( 1 - Z 2 / 4 )  

+ ( Z / 2 ) ( 1 - Z / 2 )  ~ 

= ( 3 Z / 2 ) ( 1 - Z / 4 + Z 2 / 2 4 )  

9 a 9 (  3 a  9 3 a  4) 
- 4 c ~  1 - ~ + ~  . 

V N ~ 3 a 2 3 a 4 

= -~ = 2 - - ~  16 c 4 

(cf. Mort  & Jones, 1936). 

(44) 

Since there  are two a toms per uni t  cell, the  quan t i ty  
given in equat ion  (44)qs equal  to the  number  of elec- 
t rons per  a tam t h a t  can be accommodated  in the  
polyhedron.  For  a crystal  with the ideal axial rat io 
c/a = 2]/2/]/3 this number  is 

V - - N / 2  = 1787/1024--  1.745, 

and for a crystal  with the  'min imum'  axial rat io ]/3/2 
the  number  is 

V = N/2 = 4/3 = 1.333.  

One might  ask if there  are not  other forms with 
low indices, e.g. {2T0} and {211 }, which might  t runca te  
the  polyhedron further .  For  the  first, q '"  = 3, and for 
the second q ' " =  3 + ½ Z .  If  we apply  equat ion (11), 
with each of these forms, to each of the ver tex points 
above listed in turn ,  we see t ha t  the  inequal i ty  is 
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satisfied in all cases, and therefore tha t  these planes 
do not  t runcate  the polyhedron. 

S y m m e t r y  Geh (multiplicity n = 12; for crystals of 
point group symmetry  Gab, Ce and Ceh).--The sector 
of interest ist tha t  subtended by  the shaded area in 
Fig. 8. 

b~ 
~:~.(0+k,-t 

1".~2(.2,),vo) 

(x,.O.O)~ 
x 

Fig. 8. Part  of general polyhedron of one form, symmetry C6h. 

The general expression for volume of a polyhedron 
of this symmetry  is 

V N 4 c 2 _ . . . .  ~ Z A~. (45) 
2 9 a  

For the particular plane in the form which we designate 
as  (hkl)  we require tha t  

h > - k > 0 ,  l _ > 0 .  (46) 
t 

We also find tha t  ! 

h*  = - k ,  k*  = h + k ,  l* = 1.  (47) 

The coordinates of the points shown in Fig. 8 are 

x z = q / h ,  Y z = Z z = 0 ,  

/ qh q ( h + k )  
x2 = h ~ + h k + k , ,  Y2 = h , + h k + k  ~, z~ = 0, (48) 

xa = ya = O, za = q / 1 .  

For a polyhedron bounded by one form, 

h r 4 c" 4 c 9 q3 
V = 2 9 a" XlX~Za = 9 a" l ( h ' + h k + k ~ ) "  (49) 

S y m m e t r y  Ds~ (multiplicity n = 12, for crystals of 
point group symmetry  D3, C3,, Dsa) .~The sector of 
interest is tha t  subtended .by the shaded area in Fig. 9. 
I t  could also be taken as the sector subtended by one 
of the faces (i.e. 3, 5, 5*) bu t  in such a case ther~ is 
l ikely to be considerable complication in the event of 
truncation. 

There are two cases (a) and (b), depending on which 
of the following two criteria can be made to apply to 
some plane in the form {hk l } :  

(a) ½h > - k  _>_ 0, l > 0 ; (50) 

(b) h ~ k > _ 0 ,  l _ 0 .  (51) 

Z Z 

3 

IbM _ _  Y y 

1 

x 

x=y x-2y x=y 
x,~2y 

Fig. 9. Part  of general polyhedron of one form, symmetry D~.  

Among the planes in the form there must  be one for 
which one or the other of the two sets of criteria apply. 
If only one form is to be considered, one of the cases, 
say (a), can always be obtained by  an appropriate 
choice of axes, but  where two or more forms intersect 
the distinction must in general be made. 

The general expression for volume for this symmetry  
is identical with equation (45). The coordinates of the 
points shown in Fig. 9 are: 

Case (a) Case (b) 

x z = q/h,  Yz = zz = 0 x z = q / ( h + k ) ,  Yz = z-, = 0 

x * = y ~ = q / h , z ~ = O  x ~ = y * = q / ( h + k ) , z ~ = O  

xs  = ys  = q / ( h + k ) ,  z s = O x s  = Ys = q /h ,  z s = O 

x *  = q / ( h + k ) ,  y*  = z* = 0 x *  = q/h ,  y *  = z* = 0 

Either case: 

x 4 = 2 ~ / ( 2 h + k ) ,  y~ = q/(2h+k), z 4 = 0 

x a = Y 3 = 0 ,  z 3 = q / 1  

x 5 = 2 q / ( 2 h + k ) ,  Y5 = 0, z 5 = k q / { l ( 2 h + k ) }  

x*  = y*  = 2 q / ( 2 h + k ) ,  z* = - k q / { l ( 2 h + k ) }  (52) 

For a polyhedron bounded by  a single form 

N 16c ~ qa 
v (53) 

2 9a" l ( 2 h + k )  2 

Cases involving intersections of two or more forms are 
too involved to be discussed in detail here. 
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Symmetry  C3i (multiplicity n = 6; for crystals of 
point group symmetry C3 and C3i).--This point group 
will not be treated here because polyhedra of th~s 
symmetry are not likely to be encountered more than 
rarely in practical work. 

Inscribed sphere. - - In  the hexagonal system the 
volume of an inscribed sphere is 

V N 27r c 3/~. 
2 -9 a qhkZ. (54) 

Orthorhombic  sy s t em 
We shall take 

K = ½ ,  ~ = ~ a , ~ = ½ b ,  ~ = ½ c .  (55) 
Hence 

q = h2/a 2 +k2/b 2 +l~/c 9 . (56) 

Symmetry  D2h (multiplicity n = 8; for crystals of 
point group symmetry Dg, Cev, Deh).--The sector of 
interest is that  contained in the positive octant 
(x >_ 0, y >_ O,z > 0). 

For the plane in the form to be designated (hkl) we 
require that  

h > O ,  k>_O, l > O .  (57) 

The general expression for the volume of a poly- 
hedron of this symmetry is 

N agb2c 2 
Y - -  2:  A~. (58) 

2 6 

The coordinates of the vertices of the sector of 
interest are 

x l = q / h ,  Y l = z l = O ,  | 

x 2 = O ,  y ~ = q / k ,  z 2 = 0 ,  J (59) 

x3 = Y3 = O, z a = q/1. 

The volume of a polyhedron bounded by one form is 

N aeb2c 2 
V 2 6 xly2z3 

_ a2b2c2q3 (60) 
6hkl " 

For the analysis of polyhedra bounded by two or three 
forms, Fig. 1 and Table 1 can be used. 

Inscribed sphere . - - In  the orthorhombic system, the 
t 

volume of an inscribed sphere is 

N_ 
r = = ( 6 1 )  

2 o - 

Monoclinic and triclinic sys tems  

These systems will not be treated here. 

We wish to thank Prof. Linus Pauling and Dr 
Fred Ewing for valuable discussions, and Mrs Nan Arp 
for assistance with the preparation of the figures. 
We acknowledge with thanks that  tMs work was 
supported in part  by the Carbide and Carbon Chemi- 
cals Corporation, and in part  by the Office of Naval 
Research through Contract N6onr-24432 between the 
Office of Naval Research and the California Institute 
of Technology. 

References 
BRILLOUIN, L. (1930a). C. R. Acad. Sci., Paris, 191, 198. 
BR~T.OUIN, L. (1930b). C. R. Acad. Sci., Paris, 191, 292. 
BR~T.OUr~, L. (1930c). J.  Phys. Radium, (7), 1,377. 
BR~LOUI~, L. (1931). Quantenstatistik. Berlin: Springer. 
BRILT,OUI~, L. (1932). J. Phys. Radium, (7), 3, 565. 
BRILLOUIN, L. (1933a). J. Phys. Radium, (7), 4, 1. 
BR~T.OVI~r, L. (1933b). J. Phys. Radium, (7), 4, 333. 
BRrLLOUI~, L. (1936). J. Phys. Radium, (7), 7, 401. 
BRILT,OUIN, L. (1946). Wave Propagation in Periodic 

Structures. New York: McGraw-Hill. 
JONES, H. {1934a). Proc. Roy. Soc. A, 144, 225. 
J o ~ s ,  H. (1934b). Proc. Roy. Soc. A, 147, 396. 
Moor, N. F. & Jo~-Es, H. (1936). The Theory of the Prop- 

erties of Metals and Alloys, chap. 5. Oxford: Clarendon 
Press. 

PAULI~G, L. & EW~G, F. J. (1948). Rev. Mod. Phys. 20, 
112. 

SEITZ, F. (1940). The Modern Theory of solids, chap. 8. 
New York: McGraw-Hill. 


